top of page

次氯酸消毒对抗新冠病毒效果的报告及审查
 

这是一份关于在我们前所未有的日常生活中使用次氯酸 (HCLO) 水消毒对抗 COVID-19 病毒 (2019 冠状病毒病) 的有效性的报告和评论。许多参考资料来自Michael S. Block , DMD 和Brian G. Rowan , DMD, MD 编写的《次氯酸评论》。我们还从各种来源的已发布数据中收集了一些更新的信息和证据。此外,我们还进行了自己的研究和测试以验证已发布的数据。我们还将在文章中介绍我们自己的专利次氯酸水。如果您发现此处的任何信息具有误导性、未引用或错误,除了我们专利的次氯酸信息外,请通过在此网站上发表评论或发送电子邮件至 info@starproducts.com.hk 提醒我们。

 

作者:Kenneth M. Zee  星光特殊製品有限公司 和 皇冠有限公司 董事

什么是冠状病毒疾病以及如何保护自己免受这种致命病毒的侵害

2019 冠状病毒病 (COVID-19) 是一种新型病毒。它会导致严重急性呼吸综合征。严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是一种表面传染性疾病的病原体,截至 2021 年 11 月 25 日,已感染超过 2.59 亿人。1

 

COVID-19 是一种有包膜的、正义的、单链 RNA 病毒,直径约为 60 至140纳米。该病毒的刺突糖蛋白 S1 与血管紧张素转换酶 2 (ACE2) 受体紧密结合,从而允许进入宿主细胞。2、3、4 COVID- 19感染会引发细胞因子风暴、严重肺炎、多器官衰竭和急性心脏损伤。5、6

 

病毒通过接触或气溶胶传播。传播这种病毒的常见途径是通过感染者的呼吸道气溶胶。7 在说话时,人类每秒会喷出数千个口腔液滴,这些液滴可以在空气中停留 8 到 14 分钟。8 COVID-19 在表面气溶胶中可检测到长达 3 小时,在铜上可检测到长达 4 小时,在纸板上可检测到长达 24 小时,在塑料和不锈钢上可检测到长达 2 至 3 天。9、10 有必要对可能接触 COVID- 19 表面进行消毒,以防止传播。

用于对抗新冠病毒的消毒剂

EPA 提供用于对抗 SARS-CoV-2(新冠病毒)的消毒剂清单,以防止致命病毒
 

Screenshot 2021-11-25 at 6.40.18 PM.png

日本经济产业省批准次氯酸(HCLO)

Screenshot 2021-11-25 at 6.57.33 PM.png
Screenshot 2021-11-25 at 6.53.10 PM.png
Screenshot 2021-11-25 at 6.54.51 PM.png

Video Clip in Japanese by JNN news

​NITE announcement on hypoclorous aside water to be effective against Covid-19 in June 2020

世界卫生组织 (WHO)、美国食品药品监督管理局 (FDA) 和美国农业部 (USDA) 均认可氢氯酸 (HCLO) 是安全的

为了证明 HCLO 是安全的,世界卫生组织 (WHO) 发布了饮用水指南,其中使用二氯异氰脲酸钠 (NaDCC, 1,3-二氯-1,3,5-三嗪-2,4,6-三酮) 来生产次氯酸。J2 NaDCC 是氯化羟基三嗪的钠盐,以次氯酸 (HOCl) 的形式用作可用游离氯 (AFC) 的来源,用于水消毒。它被广泛用作游泳池消毒和食品工业的稳定氯源,因为它在阳光下比大多数其他氯源更稳定。它还被用作饮用水消毒的一种手段,主要是在紧急情况下,当它提供易于使用的游离氯源时,最近,它被用作家用水处理的氯形式。指导值为 50 毫克/升或 50 ppm。J2 FDA 还批准将其用作免冲洗消毒剂,用于肉类、家禽、鱼类和海鲜、水果和蔬菜以及带壳鸡蛋 J3 USDA批准将其用于有机作物生产。J4、FDA 和 USDA 均批准氢氯酸 ( HCLO ) 是安全的。

那么次氯酸是什么?

从我们的理想方向来看,完美的消毒剂应该涂抹在皮肤上是安全的、吞咽时无毒、无腐蚀性、以多种形式有效并且价格低廉。

 

凭借丰富的经验和专业知识,我们选择了 HCLO 作为消毒剂。HCLO 是所有哺乳动物(包括人类)的内源性物质,可有效对抗多种微生物。中性粒细胞、嗜酸性粒细胞、单核吞噬细胞和 B 淋巴细胞通过线粒体膜结合酶(称为“呼吸爆发烟酰胺腺嘌呤二核苷酸磷酸氧化酶”)对损伤和感染作出反应,产生HCLO。28 HCLO 选择性地与不饱和脂质层结合,随后破坏细胞完整性。在 pH 值介于 3 和 6.5 之间时,主要物种是具有最大抗菌作用的 HCLO。

 

HCLO 一种强氧化剂。在水溶液中,它会分解成 H+ 和 ClO-,使蛋白质变性和聚集。30 HCLO 还通过氯化形成氯胺和氮中心自由基来破坏病毒,导致单链和双链 DNA 断裂,使核酸失效,病毒无害。是的,HCLO 是消毒冠状病毒(包括致命的 Covid-19)的高效解决方案。

 

影响HCLO作为消毒剂功效的参数包括接触时间浓度。32、33、34 使用方法也会影响其消毒效果。

 

稳定性、浓度和 pH 值

无论HCLO是由NaDCC片剂还是电解法制成,当您将HCLO水储存在室温下的密封容器中时,它每天都会解离。解离速率取决于 HCLO 溶液的 pH 水平。  由 NaDCC 制成的 HCLO 往往比电解方法(即几个小时)持续时间更长(即 15 天)。  如果放在冰箱里,可能会延长使用寿命。  我们建议使用氯测试来检查 HCLO 效力。  基本上,当 AFC 一开始就较低时,集中度会维持得更好。  但是,我们强烈建议您使用通过 NaDCC 片剂或电解方法新鲜制备的 HCLO 水。

 

由于 CLO– 与 HCLO 的比率降低,半衰期随着 pH 值的降低而增加。36 百万分率 (ppm) 是 –OCl 的浓度,它是活性成分,被称为有效游离氯 (AFC) )在解决方案中。当暴露于紫外线辐射、阳光或与空气接触或当溶液温度升高超过 25°C 时,HCLO 溶液稳定性较差。 HCLO 溶液应储存在阴凉、避光的地方,并尽量减少与空气的接触。制造用水应是有机和无机离子浓度尽可能小的水。37, 38, 39, 40

 

图 1 显示了次氯酸盐、次氯酸和氯与 pH 值的函数关系。  在 pH = 3.5 和 pH = 5.5 之间,HCLO 是主要物质。  

在 pH = 5.5 和 pH = 9.5 之间,HCLO 和 OCL- 物质以不同比例存在,但在 pH8 以上,OCL- 占主导地位。 13

 

 

 

 

 

 

 

 

浓度高于 50 ppm 的 HCLO 溶液似乎具有杀真菌和杀病毒作用。 HOCl 针对低致病性禽流感病毒 (AIV) H7N1.59 进行了评估。HOCl 溶液在 pH 6 时含有 50、100 和 200 ppm 氯。喷洒 HOCl 将 AIV 滴度降低至不可检测的水平(< 2.5 log10TCID50/mL) 在 5 秒内,除了在 30 cm 距离喷洒后收获的 50 ppm 溶液外。当次氯酸溶液直接喷洒在含有病毒的床单上 10 秒时,100 和 200 ppm 的溶液立即使 AIV 灭活。 50 ppm 溶液需要至少 3 分钟的接触时间。这些数据表明,HOCl 可以喷雾形式用于灭活 AIV。59 , 60 当气溶胶没有直接喷雾到接种表面上时,较少量的溶液有机会与 AIV 接触。至少需要接触 10 分钟才能生效。61

pH vs HOCL

Graph 1,  HCLO (same as HOCL) 

 

HCLO vs pH  

安全且经过验证的应用程序
 

漱口水

如果次氯酸用作漱口水,则必须假设一部分漱口水会被吞下。一项动物研究从其在漱口水中使用的角度评估了摄入 HCLO 的全身和胃肠道影响。45 17 只小鼠免费获得次氯酸水作为饮用水。口腔目视检查、组织病理学检查或表面牙釉质粗糙度测量均未观察到异常结果,表明没有全身影响。 J2

 

眼科

HOCl 通过减少眼周皮肤表面的细菌负荷来治疗睑缘炎。使用含有 100 ppm HCLO 的生理盐水卫生溶液 20 分钟后,葡萄球菌负荷减少了 99% 以上。 46

 

生物膜

HCLO 可有效清洁生物膜污染的种植体表面。与次氯酸钠和氯己定相比,HCLO 显着降低了牙龈卟啉单胞菌的脂多糖浓度,并且口腔组织具有良好的耐受性。47 HCLO 显着减少了牙刷上的细菌;它作为漱口水和牙刷消毒非常有效。48

 

伤口护理

在一项腹膜内伤口护理的临床研究中,患者接受了 100 ppm HCl 的腹膜腔灌洗和 200 ppm 的伤口清洗。49 没有观察到不良反应。

HCLO 已被证明是减少开放性伤口中伤口细菌数量的有效药剂。50 在超声波系统的冲洗溶液中,HCLO 使细菌数量降低了 4 至 6 个对数。到最终闭合时,生理盐水冲洗对照伤口的细菌计数回升至 105,但 HCLO 冲洗伤口的细菌计数仍保持在 102 或更低。生理盐水组中超过 80% 的患者发生术后闭合失败,而 HCLO 组中这一比例为 25%。

 

表面应用

一项研究使用 HOCl 对门诊手术中心进行消毒。55 清洁后,HCLO 清洁和消毒研究组中的房间的细菌数量明显低于接受标准清洁和消毒的房间。

 

通过喷雾器或雾化器施加次氯酸

雾化器采用溶液并产生小型气溶胶雾(理想尺寸小于 20 μm),以对区域进行消毒。 HCLO 雾对于表面的微生物消毒非常有效。雾化过程会改变消毒剂的物理和化学性质。结果发现,雾化使 AFC 浓度降低了大约 70%,pH 值提高了大约 1.3,使溶液的碱性稍微增强;据推测,氯的损失是由于氯气蒸发造成的。56 , 57 由于次氯酸雾的性质变化是可预测的,因此在雾化前调节溶液的浓度和 pH 值可以控制浓度水平雾化后达到灭活病原体的理想范围。40 当使用适当的浓度时,一项研究发现,所有测试病毒在垂直和水平表面上的感染性和 RNA 滴度均降低了 3 至 5 log10,这表明雾化是一种有效的方法。减少表面病毒的方法.40 , 58


 

次氯酸(HCLO)为何不稳定
 

 

 

与其他消毒剂一样,HClO 在紫外线 (UV)、阳光、空气接触和高温 (≧25℃) 下不稳定

 

HCLO 是一种弱酸。氯原子在该酸中的氧化态为 +3。纯物质不稳定,会不成比例地生成次氯酸(Cl 氧化态为 +1)和氯酸(Cl 氧化态为 +5)。亚氯酸盐(例如亚氯酸钠)是从该酸衍生的稳定共轭碱。

 

HOCl 如何解离?

次氯酸(HOCl)是一种弱酸,氯溶于水时会形成,其本身会部分分解,形成次氯酸盐 ClO−。HClO 和 ClO− 是氧化剂,也是氯溶液的主要消毒剂。

 

随后的问题是,为什么 HOCl 比 OCL 强?

pH 中性的次氯酸 (HOCL) 可以穿透致病微生物的细胞壁,而带负电荷的次氯酸根离子 (OCL-) 则无法穿透细胞壁。次氯酸 (HOCL) 的杀灭效果比次氯酸根离子 (OCl-) 强 80-100 倍,杀灭微生物的速度也更快。

 

HOCl 和 HClO 相同吗?

HOCl 和 HClO 完全相同。这是次氯酸的分子式。根据给定的分子式,它也被称为次氯酸氢盐或氢氧化氯。氯还与氧和氢原子形成一些其他含氧酸。

参考

1. Johns Hopkins University COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) https://coronavirus.jhu.edu/map.html 

2. Xu H., Zhong L., Deng J. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12:8. [PMC free article] [PubMed] [Google Scholar]

3. Li H., Liu S.-M., Yu X.-H. Coronavirus Disease 2019 (COVID-19): Current status and future perspectives. Int J Antimicrob Agents. 2020;55:105951. [PMC free article] [PubMed] [Google Scholar]

4. Lu G., Wang Q., Gao G.F. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23:468. [PMC free article] [PubMed] [Google Scholar]

5. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497. [PMC free article] [PubMed] [Google Scholar]

6. Zumla A., Hui D.S., Azhar E.I. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option. Lancet. 2020;395:e35. [PMC free article] [PubMed] [Google Scholar]

7. Lu H., Stratton C.W., Tang Y.W. Outbreak of pneumonia of unknown etiology in Wuhan China: The mystery and the miracle. J Med Virol. 2020;92:401. [PMC free article] [PubMed] [Google Scholar]

8. Stadnytskyi C., Bax E., Bax A., Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Nat Acad Sci. 2020;117:11875. [PMC free article] [PubMed] [Google Scholar]

9. Cottone J.A., Terezhalmy G.T., Molinari J.A. Williams & Wilkins; Baltimore, MD: 1996. Practical Infection Control in Dentistry; pp. 139–140. [Google Scholar]

10. van Doremalen N., Morris D.H., Holbrook M.G. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med. 2020;382:1564. [PMC free article] [PubMed] [Google Scholar]

11. US Environmental Protection Agency. List N. Disinfectants for use against SARS-CoV-2. https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2 Available at:

12. Suman R., Javaid M., Haleem A. Sustainability of coronavirus on different surfaces [published online May 6, 2020] https://doi.org/10.1016/j.jceh.2020.04.020 J Clin Exp Hepatol. [PMC free article] [PubMed]

13. https://www.who.int/water_sanitation_health/water-quality/guidelines/en/watreatpath3.pdf?ua=1 

14. Hagbom M., Nordgren J., Nybom R. Ionizing air affects influenza virus infectivity and prevents airborne-transmission. Sci Rep. 2015;5:11431. [PMC free article] [PubMed] [Google Scholar]

15. McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin Microbiol Rev. 1999;12:147. [PMC free article] [PubMed] [Google Scholar]

16. Ding T., Xuan X.-T., Li J. Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control. 2016;60:505. [Google Scholar]

17. Wolfe R.L. Ultraviolet disinfection of potable water—Current technology and research needs. Environ Sci Technol. 1990;24:768. [Google Scholar]

18. Xu P., Kujundzic E., Peccia J. Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria. Environ Sci Technol. 2005;39:9656. [PubMed] [Google Scholar]

19. Weber D.J., Kanamori H., Rutala W.A. ‘No touch’ technologies for environmental decontamination: Focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016;29:424. [PubMed] [Google Scholar]

20. Health Quality Ontario Portable ultraviolet light surface-disinfecting devices for prevention of hospital-acquired infections: A health technology assessment. Ont Health Technol Assess Ser. 2018;18:1. [PMC free article] [PubMed] [Google Scholar]

21. Nerandzic M.M., Thota P., Sankar T. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36:192. [PubMed] [Google Scholar]

22. Lidwell O.M. Ultraviolet radiation and the control of airborne contamination in the operating room. J Hosp Inf. 1994;28:245. [PubMed] [Google Scholar]

23. Menetrez M.Y., Foarde K.K., Dean T.R., Betancourt D.A. The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chem Eng J. 2010;157:443. [Google Scholar]

24. Moggio M., Goldner J.L., McCollum D.E., Beissinger S.F. Wound infections in patients undergoing total hip arthroplasty. Ultraviolet light for the control of airborne bacteria. Arch Surg. 1979;14:815. [PubMed] [Google Scholar]

25. Goldner J.L., Moggio M., Beissinger S.F., McCollum D.E. Ultraviolet light for the control of airborne bacteria in the operating room. Ann N Y Acad Sci. 1980;353:271. [PubMed] [Google Scholar]

26. Reed N.G. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 2010;125:15. [PMC free article] [PubMed] [Google Scholar]

27. Cadnum J.L., Li D.F., Redmond S.N. Effectiveness of ultraviolet-C light and a high-level disinfection cabinet for decontamination of N95 respirators. Pathog Immun. 2020;5:52. [PMC free article] [PubMed] [Google Scholar]

28. Kettle A.J., Winterbourn C.C., Myeloperoxidase A key regulator of neutrophil oxidant production. Redox Rep. 1997;3:3. [PubMed] [Google Scholar]

29. Wang L., Bassiri M., Najafi R. Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity. J Burns Wounds. 2007;6:e5. [PMC free article] [PubMed] [Google Scholar]

30. Biology Stack Exchange How does hypochlorous acid inactivate viruses? https://biology.stackexchange.com/questions/62671/how-does-hypochlorous-acid-inactivate-viruses Available at: Accessed July 9, 2020.

31. Winter J., Ilbert M., Graf P.C.F. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. 2008;135:691. [PMC free article] [PubMed] [Google Scholar]

32. Hawkins C.L., Davies M.J. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: Formation of chloramines and nitrogen-centered radicals. Chem Res Toxicol. 2002;15:83. [PubMed] [Google Scholar]

33. Mourad K.A., Hobro S. Developing chlorine-based antiseptic by electrolysis. Sci Total Environ. 2020;709:136108. [PubMed] [Google Scholar]

34. Martin M.V., Gallagher M.A. An investigation of the efficacy of super-oxidised (Optident/Sterilox) water for the disinfection of dental unit water lines. Br Dent J. 2005;198:353. [PubMed] [Google Scholar]

35. Rossi-Fedele G., Dogramaci E.J., Steier L., de Figueiredo J.A. Some factors influencing the stability of Sterilox(®), a super-oxidised water. Br Dent J. 2011;210:E23. [PubMed] [Google Scholar]

36. Nowell L.H., Hoigné J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—I. Degradation rates. Water Res. 1992;26:593. [Google Scholar]

37. Rutala W.A., Cole E.C., Thomann C.A., Weber D.J. Stability and bactericidal activity of chlorine solutions. Infect Control Hosp Epidemiol. 1998;19:323. [PubMed] [Google Scholar]

38. Ishihara M., Murakami K., Fukuda K. Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol Sci. 2017;22:223. [PubMed] [Google Scholar]

39. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Inf. 2020;104:246. [PubMed] [Google Scholar]

40. Park G.W., Boston D.M., Kase J.A. Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol. 2007;73:4463. [PMC free article] [PubMed] [Google Scholar]

41. Hinds W.C. Wiley; New York, NY: 1982. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. [Google Scholar]

42. Sotiriou M., Ferguson S.F., Davey M. Measurement of particle concentrations in a dental office. Environ Monit Assess. 2008;137:351. [PubMed] [Google Scholar]

43. Veasey S., Muriana P.M. Evaluation of electrolytically-generated hypochlorous acid (‘electrolyzed water’) for sanitation of meat and meat-contact surfaces. Foods. 2016;5:42. [PMC free article] [PubMed] [Google Scholar]

44. Miller R.L. Characteristics of blood-containing aerosols generated by common powered dental instruments. Am Ind Hyg Assoc J. 1995;56:670. [PubMed] [Google Scholar]

45. Morita C., Nishida T., Ito K. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol. 2011;56:359. [PubMed] [Google Scholar]

46. Stroman D.W., Keri Mintun K., Epstein A.B. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol. 2017;11:707. [PMC free article] [PubMed] [Google Scholar]

47. Chen C.-J., Chen C.-C., Ding S.-J. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci. 2016;17:1161. [PMC free article] [PubMed] [Google Scholar]

48. Lee S.H., Choi B.K. Antibacterial effect of electrolyzed water on oral bacteria. J Microbiol. 2006;44:417. [PubMed] [Google Scholar]

49. Kubota A., Goda T., Tsuru T. Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg Today. 2015;45:876. [PubMed] [Google Scholar]

50. Hiebert J.M., Robson M.C. The immediate and delayed post-debridement effects on tissue bacterial wound counts of hypochlorous acid versus saline irrigation in chronic wounds. Eplasty. 2016;16:e32. [PMC free article] [PubMed] [Google Scholar]

51. US Department of Health and Human Services–Food and Drug Administration Center for Drug Evaluation and Research Consumer antiseptic wash final rule questions and answers: Guidance for industry. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM568513.pdf 2017. Available at: Accessed July 9, 2020.

52. Wolfe M.K., Gallandat K., Daniels K. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water. PLoS One. 2017;12 [PMC free article] [PubMed] [Google Scholar]

53. Medical Press: Hypochlorous acid water generator highly effective in removing bacteria and deodorizing. https://medicalxpress.com/news/2016-03-hypochlorous-acid-highly-effective-bacteria.html Available at: Published 2016. Accessed May 18, 2020.

54. D&D Electronics: About disinfection generator NaOClean. http://dndele.tradekorea.com/company.do 2018. Available at: Accessed July 9, 2020.

55. Overholt B., Reynolds K., Wheeler D. 1151. A safer, more effective method for cleaning and disinfecting GI endoscopic procedure rooms. Open Forum Infect Dis. 2018;5(Suppl 1):S346. [Google Scholar]

56. McRay R.J., Dineen P., Kitzke E.D. Disinfectant fogging techniques. Soap Chem Spec. 1964;40:112. [Google Scholar]

57. Zhao Y., Xin H., Zhao D. Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house. Ann Agric Environ Med. 2014;21:249. [PubMed] [Google Scholar]

58. Galvin S., Boyle M., Russell R.J. Evaluation of vaporized hydrogen peroxide, Citrox and pH neutral Ecasol for decontamination of an enclosed area: A pilot study. J Hosp Inf. 2012;80:67. [PubMed] [Google Scholar]

59. Hakimullah H., Thammakarn C., Suguro A. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments. J Vet Med Sci. 2015;77:211. [PMC free article] [PubMed] [Google Scholar]

60. Tamaki S., Bui V.N., Ngo L.H. Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses. Arch Virol. 2014;149:405. [PubMed] [Google Scholar]

61. Hao X.X., Li B.M., Zhang Q. Disinfection effectiveness of slightly acidic electrolysed water in swine barns. J Appl Microbiol. 2013;115:703. [PubMed] [Google Scholar]

J1. National Institute of Technology and Evaluation www.nite.go.jp/data/000111306.pdf 

J2. WHO Publication on Sodium Dichloroisocyanurate in Drinking water, Background document for development of WHO Guidelines for Drinking-water Quality https://www.who.int/water_sanitation_health/dwq/chemicals/sodium_dichloroisocyanurate_2add_feb2008.pdf

J3. Environmental Decision Memo for Food Contact Notification No. 1811 www.fda.gov/food/environmental-decisions/environmental-decision-memo-food-contact-notification-no-1811

J4. Formal Recommendation, Subject: Addition of Hypochlorous Acid generated from electolyzed water.https://www.ams.usda.gov/sites/default/files/media/CS%20Hypochlorous%20Acid%20NOP.pdf

J5. Symposium 1 Control of microorganisms in stress environment, Japan J. Food Microbiols., 26(2), 76-80, 2009 

https://www.jstage.jst.go.jp/article/jsfm/26/2/26_2_76/_pdf/-char/ja

​W1. The pH of water from various sources 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736366/.

W3. Coronavirus 'does not have own pH'

https://africacheck.org/fact-checks/fbchecks/coronavirus-doesnt-have-own-ph-level-alkaline-food-wont-beat-it

 

P1. Panasonic Ziaino pH value.

https://www.panasonic.oa.hk/english/products/air-purification-products/air-treatment/f-jpt70h.aspx

 

 

 

 

 

 

 

 

bottom of page